

Fever

Advantages

- Increases transferrins
- Increases IL-1 activity
- Produces interferon

- Disadvantages
 - Tachycardia
 - Acidosis
 - Dehydration
 - $-44-46^{\circ}$ C fatal

The Concept of Immunity

- 16-1 Differentiate innate and adaptive immunity.
- 16-2 Define Toll-like receptors.

The Concept of Immunity

- **Susceptibility**: lack of resistance to a disease
- Immunity: ability to ward off disease
- Innate immunity: defenses against any pathogen
- Adaptive immunity: immunity or resistance to a specific pathogen

An Overview of the Body's Defenses

Figure 16.1 An overview of the body's defenses.

Innate Immunity		Adaptive Immunity (Chapter 17)
First line of defense	Second line of defense	Third line of defense
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Phagocytes, such as neutrophils, eosinophils, dendritic cells, and macrophages Inflammation Fever Antimicrobial substances 	 Specialized lymphocytes: T cells and B cells Antibodies

The Concept of Immunity

- Host Toll-like receptors (TLRs) attach to pathogen-associated molecular patterns (PAMPs)
- TLRs induce **cytokines** that regulate the intensity and duration of immune responses

- Which defense system, innate or adaptive immunity, prevents entry of microbes into the body? 16-1
- What relationship do Toll-like receptors have to pathogen-associated molecular patterns? 16-2

First Line of Defense: Skin and Mucous Membranes

- **16-3** Describe the role of the skin and mucous membranes in innate immunity.
- **16-4** Differentiate physical from chemical factors, and list five examples of each.
- **16-5** Describe the role of normal microbiota in innate immunity.

Physical Factors

- Skin
- Epidermis consists of tightly packed cells with
 - Keratin, a protective protein

Figure 16.2 A section through human skin.

Physical Factors

- Mucous membranes
- Mucus: traps microbes
- **Ciliary escalator**: transports microbes trapped in mucus away from the lungs

Figure 24.7 Ciliated cells of the respiratory system infected with *Bordetella pertussis*.

Figure 16.4 The ciliary escalator.

Physical Factors

- Lacrimal apparatus: washes eye
- Saliva: washes microbes off
- Urine: flows out
- Vaginal secretions: flow out

Figure 16.3 The lacrimal apparatus.

Chemical Factors

- Fungistatic fatty acid in **sebum**
- Low pH (3–5) of skin
- Lysozyme in perspiration, tears, saliva, and urine
- Low pH (1.2–3.0) of gastric juice
- Low pH (3–5) of vaginal secretions

Normal Microbiota and Innate Immunity

- Microbial antagonism/competitive exclusion: normal microbiota compete with pathogens or alter the environment
- Commensal microbiota: one organism (microbe) benefits, and the other (host) is unharmed
 - May be opportunistic pathogens

- Identify one physical factor and one chemical factor that prevent microbes from entering the body through skin and mucous membranes. 16-3
- Identify one physical factor and one chemical factor that prevent microbes from entering or colonizing the body through the eyes, digestive tract, and respiratory tract. 16-4
- Distinguish microbial antagonism from commensalism. 16-5

Second Line of Defense

- **16-6** Classify leukocytes, and describe the roles of granulocytes and monocytes.
- **16-7** Define *differential white blood cell count*.
- 16-8 Differentiate the lymphatic and blood circulatory systems.

Table 16.1 Formed Elements in Blood (Part 1 of 2)

TABLE **16.1** Formed Elements in Blood

Table 16.1 Formed Elements in Blood (Part 2 of 2)

TABLE **16.1** Formed Elements in Blood

3. Eosinophils (2–4%) Functions: Production of toxic proteins against certain parasites; some phagocytosis

 3. Lymphocytes (20–25%)
 Natural killer (NK) cells Function: Destroy target cells by cytolysis and apoptosis

• T cells Function: Cell-mediated immunity (discussed in Chapter 17)

• B cells Function: Descendants of B cells (plasma cells) produce antibodies

III. Platelets

150,000–400,000 per μl or mm³ Function: Blood clotting

Differential White Cell Count

• Percentage of each type of white cell in a sample of 100 white blood cells

Neutrophils	60–70%
Basophils	0.5–1%
Eosinophils	2–4%
Monocytes	3–8%
Lymphocytes	20–25%

Figure 16.5a The lymphatic system.

(a) Components of lymphatic system

The Lymphatic System

Figure 16.5b-c The lymphatic system.

(b) Relationship of lymphatic capillaries to tissue cells and blood capillaries

(c) Details of a lymphatic capillary

- Compare the structures and function of monocytes and neutrophils. 16-6
- Describe the six different types of white blood cells, and name a function for each type. 16-7
- What is the function of lymph nodes? 16-8

Second Line of Defense

- **16-9** Define *phagocyte* and *phagocytosis*.
- 16-10 Describe the process of phagocytosis, and include the stages of adherence and ingestion.
 - **16-11** Identify six mechanisms of avoiding destruction by phagocytosis.

Phagocytosis

- *Phago*: from Greek, meaning eat
- *Cyte*: from Greek, meaning cell
- Ingestion of microbes or particles by a cell, performed by phagocytes

Figure 16.6 A macrophage engulfing rod-shaped bacteria.

Phagocytosis

- Neutrophils
- Fixed macrophages
- Wandering macrophages

Figure 16.7 The Phases of Phagocytosis.

Oxidative Burst

Phagocytosis

Microbial Evasion of Phagocytosis

Inhibit adherence: M protein, capsules	Streptococcus pyogenes, S. pneumoniae
Kill phagocytes: Leukocidins	Staphylococcus aureus
Lyse phagocytes: Membrane attack complex	Listeria monocytogenes
Escape phagosome	Shigella, Rickettsia
Prevent phagosome– lysosome fusion	HIV, Mycobacterium tuberculosis
Survive in phagolysosome	Coxiella burnettii

Microbial Evasion of Phagocytosis

ANIMATION Virulence Factors: Hiding from Host Defenses

ANIMATION Virulence Factors: Inactivating Host Defenses

ANIMATION Phagocytosis: Microbes that Evade It

- What do fixed and wandering macrophages do?
 16-9
- What is the role of TLRs in phagocytosis? 16-10
- How does each of these bacteria avoid destruction by phagocytes? *Streptococcus pneumoniae, Staphylococcus aureus, Listeria monocytogenes, Mycobacterium tuberculosis, Rickettsia* 16-11

Second Line of Defense

- **16-12** List the stages of inflammation.
- **16-13** Describe the roles of vasodilation, kinins, prostaglandins, and leukotrienes in inflammation.
- **16-14** Describe phagocyte migration.
- 16-15 Describe the cause and effects offever.

Inflammation

- Activation of acute-phase proteins (complement, cytokine, and kinins)
- Vasodilation (histamine, kinins, prostaglandins, and leukotrienes)
- Redness
- Swelling (edema)
- Pain
- Heat

Chemicals Released by Damaged Cells

Histamine	Vasodilation, increased permeability of blood vessels
Kinins	Vasodilation, increased permeability of blood vessels
Prostaglandins	Intensify histamine and kinin effect
Leukotrienes	Increased permeability of blood vessels, phagocytic attachment

Phagocyte Migration and Phagocytosis

Figure 16.8a-b The process of inflammation.

Figure 16.8c The process of inflammation.

6

Phagocytosis of invading bacteria occurs.

(c) Phagocyte migration and phagocytosis

Figure 16.8d The process of inflammation.

(d) Tissue repair

Fever

- Abnormally high body temperature
- Hypothalamus is normally set at 37° C
- Gram-negative endotoxins cause phagocytes to release interleukin-1 (IL-1)
- Hypothalamus releases prostaglandins that reset the hypothalamus to a high temperature
- Body increases rate of metabolism, and **shivering** occurs, which raise temperature
- Vasodilation and sweating: body temperature falls (crisis)

- What purposes does inflammation serve? 16-12
- What causes the redness, swelling, and pain associated with inflammation? 16-13
- What is margination? 16-14
- Why does a chill indicate that a fever is about to occur? 16-15

Antimicrobial Substances

- **16-16** List the major components of the complement system.
- **16-17** Describe three pathways of activating complement.
 - **16-18** Describe three consequences of complement activation.

The Complement System

- Serum proteins activated in a cascade
- Activated by
 - Antigen–antibody reaction
 - Proteins C3, B, D, P and a pathogen

The Complement System

- C3b causes opsonization
- C3a + C5a cause inflammation
- C5b + C6 + C7 + C8 + C9 cause cell lysis

Figure 16.9 Outcomes of Complement Activation.

Bursting of microbe due to inflow of extracellular fluid through transmembrane channel formed by membrane attack complex

Effects of Complement Activation

- Opsonization, or immune adherence: enhanced phagocytosis
- Membrane attack complex: cytolysis
- Attract phagocytes

Figure 16.10 Cytolysis caused by complement.

Figure 16.11 Inflammation stimulated by complement.

Figure 16.12 Classical pathway of complement activation.

Figure 16.13 Alternative pathway of complement activation.

Figure 16.14 The lectin pathway of complement activation.

Some Bacteria Evade Complement

- Capsules prevent C activation
- Surface lipid—carbohydrate complexes prevent formation of membrane attack complex (MAC)
- Enzymatic digestion of C5a

- What is complement? 16-16
- List the steps of complementation activation via (1) the classical pathway, (2) the alternative pathway, and (3) the lectin pathway. 16-17
- Summarize the major outcomes of complement activation. 16-18

Antimicrobial Substances

- **16-19** Define *interferons*.
- **16-20** Compare and contrast the actions of IFN- α and IFN- β with IFN- γ .
- **16-21** Describe the role of iron-binding proteins in innate immunity.
 - **16-22** Describe the role of antimicrobial peptides in innate immunity.

Interferons (IFNs)

- IFN- α and IFN- β : cause cells to produce antiviral proteins that inhibit viral replication
- IFN-γ: causes neutrophils and macrophages to phagocytize bacteria

Figure 16.15 Antiviral action of alpha and beta interferons (IFNs).

and protein kinase.

Innate Immunity

- Transferrins
 - Bind serum iron

- Antimicrobial peptides
 - Lyse bacterial cells

- What is interferon? 16-19
- Why do IFN-α and IFN-β share the same receptor on target cells, yet IFN-γ has a different receptor? 16-20
- What is the role of siderophores in infection? 16-21
- Why are scientists interested in AMPs? 16-22